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Surrogate analysis of coherent multichannel data
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We present a method for generating surrogate data for multichannel time series. By preserving both the
power spectra and the cross spectrum of the original data, we can determine if a given statistisatiesas
the synchronization indexs being biased by the presence of coherence due to linear superposition of the
separate measurements. Current methods based on phase randomization techniques are unsuitable for this
particular task. This method is demonstrated on various canonical systems and numerical models. We will
show that this algorithm is capable of properly preserving the power spectra and coherence function of the
original data, and furthermore, that with the help of surrogate analysis the synchronization index measure is
capable of distinguishing between coupled nonlinear oscillators and coherent superpositions of independent
chaotic oscillators.
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[. INTRODUCTION distinguish between synchronization and linear coherence.
For example, application of pharmacological agents can
Recent advances in experimental multichannel recordingnodify coupling strength between neurons, showing changes
techniques in medicine and neuroscience have stimulateid dynamics[5,6]. In other cases, changing the natural fre-
growing interest in synchronizatidi—4]. Recent studies in quencies of interacting subsystems may reveal the existence
the visual system of catgl], and the olfactory system of of coupling and synchronizatiofi1,12. Unfortunately, in
locusts[5,6], have revealed the impact of synchronization onmany cases such experimental procedures are either very dif-
operational performance of sensory systems. Moreover, thicult to do, or completely impossible as in the case with
application of synchronization ideas to magnetoencephaloglEG. Therefore, the statistical methods for generating sur-
raphy (MEG) of Parkinsonian patients has shown the advantogates and rejecting a null hypothesis must be applied.
tage of the synchronization approach in comparison with the The crucial question that arises is: “What effect does the
traditional cross-correlatioricoherence analysis[7,8]. In coherence between two signals have on the synchronization
particular, it was shown that synchronization measures baseadeasures?” In order to establish whether a given synchroni-
on statistical properties of instantaneous phase differencestion measure calculation indicates a real dynamical cou-
between two channels, allow a more precise localization opling between the signals, or is simply due to linear super-
the tremor related brain activity’]. position, statistical significance testing must be dpt&.
Synchronization is fundamentally a nonlinear effect and is  Surrogate analysis is often used to empirically estimate
manifested as the adjustment of frequencies or phases tie distribution of statistical measures. For the purposes re-
weakly interacting oscillatory nonlinear elements. When twoquired here, the surrogate data should preserve both the
oscillators are synchronized it is expected that they will exjpower spectra of the two time series being analyzed, as well
hibit a high degree of coherence. On the other hand, coheas the coherence function. Methods for generating surrogates
ence of two signals can simply be due to linear superposiwith these properties have been develofeti15, based on
tion, and it must be established that the synchronizatiothe well-known phase randomized surrogate techniques
measure is not being biased. [16,17. These methods work by adding random numbers
An example of this problem can be seen in the synchro{from 0 to 2r) to the phase of each frequency component of
nization tomography technique developed by Tassl. the Fourier transform of the data. The same set of random
[7,8]. Current source densities in the human brain are calcushases is added to each time series, thereby preserving the
lated from MEG signals, using a technique known as magphase differences, and thus the coherence function of the
netic field tomographyMFT) [9]. Synchronization analysis original data. This technique is not appropriate for the analy-
can then be applied to pairs of source locations in the brairsis proposed here, although the reason is somewhat subtle.
The nature of the way the MEG readings are recorded guar- The phase differences that would be expected if linear
antees that each signal has a certain amount of cross cosdperposition were the source of the coherence will have a
tamination from other locatior¥']. Methods for distinguish-  specific distribution. Of course, if the phase differences of
ing between synchronization and simple linear coherence atie original data clearly do not match the expected distribu-
therefore of great importance and practical relevdrics. tion, we can reject the null hypothesis immediately. But in
The straightforward experimental manipulations whichmany cases the distribution of phase differences may not be
modify system parameters are, in principle, the best way tdmmediately distinguishable from the expected distribution.
Nevertheless, any anomalies that may exist will be exactly
preserved by the surrogates described above, which can re-
*Electronic mail: kdolan@mailaps.org sult in a significant bias. Put simply, the coherence function
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is an averaged quantity that depends on the phase diffeone potential well to another. Several measures have been
ences. By preserving the exact phase differences from theroposed to characterize such stochastic dynafdies23).
original data, we preserve not just the coherence functionn the case of the 1:1 synchronization considered here, these
but also any other correlations that may be encoded by thmeasures can be derived from the probability density of the
phase differences. These other correlations could effect thehase differenc® (). The uniform distribution corresponds
synchronization measures in any number of unpredictableo the absence of synchronization, while a well expressed
ways. peak inP(y) indicates synchronization. The synchronization
In this paper we propose a method of surrogate analysisdex can thus be derived as the first Fourier harmonic of
for multichannel data sets that is based on the digitally fil-P(y) [10]:
tered shuffled DFS) surrogate technique recently described
in Ref. [18]. This method was developed to address a prob- y?={(cosy)?+(siny)>. (4)
lem with spectral variability in the phase randomized surro-
gate techniquefl5,19. This paper is organized as follows. The synchronization index changes from(uniform distri-
In Sec. Il we describe the synchronization index and thebution of the phase difference, no synchronizatiom1 (6
coherence function. We present the algorithm for generatingistribution, strongest synchronizatjon
the coherent digitally filteredCDF) surrogates in Sec. lll. In
Seacr.nlp\l/e;ve demonstrate the technique on some canonical;, ~OHERENT DIGITALLY FILTERED SURROGATES
X .
In Ref.[18] a technique was presented for generating sur-
II. SYNCHRONIZATION INDEX rogate data that preserves the power spectrum of the original
AND COHERENCE FUNCTION data, but which is consistent with the null hypothesis of a
linear stochastic process. This method is based on the basic

The coherence function measures linear correlations bgyrinciples of linear signal processing and can be adapted for
tween two stochastic processggt) and y(t) in the fre-  the problem at hand.

quency domainj20], and is calculated as The first part of the analysis consists of extracting the
needed information from the original data. The power spec-

Cif)= [Fay(F) 1) tra Fy, and Fyy, as well as the Cross spectrury,, are
Fad(T)Fyy(f)’ calculated. This is done by demeaning the data, and then

using 50% overlapping samples of lendth whereN/2+ 1
where the power spectra and cross spectrum are given by is the desired frequency resolution. Fourier transforms of
these samples are made using a windowing function, such as

Fuxd(f)=(X(f)X*(f)), the Welch window[24]. The averaging called for in E§2)
is then made over these samples. A detailed description of
Fy(f)=(Y(F)Y*()), (2)  this process can be found in RER5).
The sample siz&l should be chosen small enough to pro-
Fuy(F)=(Y(F)X*()), vide effective averaging, but large enough to resolve any

significant structure. Linear filters can be made from the
power-spectra estimatesxft) andy(t) as described in Ref.

o 18]. That is, by taking the square root of the power estimate,
to be an ensemble average over many realizations of th

. . nd then using linear interpolation to increase the frequency
Processes. Of course, In practice these averages must be F&5olution fromN/2+1 back toL/2+ 1, whereL is the file
timated from the single pair of measured time series. Th ’

; ; ?ength. This produces a transfer function that, when multi-
%ﬂ“egsﬂgfeaucrgt'on ranges from(@o cross correlatiorto 1 plied by the Fourier transform of a length sequence of

o Gaussian distributedg-correlated numbergwhite noise,
Phase synchronization between two procesgegd and > . ¢

y(t) is estimated through the calculation of the di1‘ferenceqv;/lljllmresuIt In & time series with the appropriate power spec-
Iyu(t) between their instantaneous phaggét) and ¢, (t). X

X . To reproduce the appropriate coherence function for our
See Rgfs[lO,ZJ] for different approaches to the calculation surrogates, we look at a simple model for linear superposi-
of the instantaneous phase:

tion. Consider two statistically independent linear stochastic
) =M (t)—ndby(t), 3 processg:u(t) andv(t). We can then make two coherent
Yo D) =Me(1) =N by (1) ® time series as follows:

wherem andn are integer numbers. In this paper we consider

and X(f) andY(f) are the Fourier transforms aft) and
y(t), respectively. The indicated averagiftg is understood

the simplest case of 1:1 synchronization whes n= 1. Due S(t)=au(t) +(1-a)v(t),
to noise in the system, the phase difference diffuses over a )
periodic potentiall (#y,) =U(iy,+27) [22]. The Brown- sy()=(1—a)u(t) +av(t),

ian motion of the phase difference of stochastically synchro-

nized systems contains the phase-locked epochs when théere a is a constant from Qno coherenceto 0.5 (full
phase difference stays in a potential well @{¢,,), and coherencg The coherence can easily be calculated for the
phase slips when the phase difference rapidly jumps frontime seriess,(t) ands(t):
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B 2a(1—a) 6
_az—l—(l—a)z' © .
2]
Note that when we write it this way, we see thatan be 5
an arbitrary function of frequendy By doing the sum in Eq. g
(5) in the frequency domain, we can achieve any coherence Lf,
function C(f ) we want: 2
Q
o
20(f)[1-a(f)] 0.5
O AN "
0.0+ T T T T T
One very convenient aspect of the coherence function is 0 50 F1°° 1508_ 200 250
that if one(or both of the time series are passed through a requency Ein
linear filter, the coherence function is not altered. This means 107 ()
that we can generate surrogates of our original time series
x(t) andy(t) by makingu(t) andv(t) independent white é
noise, and then use an appropriate functigi ) to gets, e
ands,, which can then be filtered to get the appropriate T
power spectra. 3
To select the proper values af (as a function of fre- 3
quency, we simply invert Eq(7), %
O o
)= 1 /1 C(f) g
«M=3"Nz 215y ® 0.0-

0 50 100 150 200 250
It should be noted that the power spectraspénds, will Frequency Bin

no longer be white, due to the summing above. The filters

must therefore be altered to compensate for this effect. The FIG. 1. (&) Power spectra of the original time seried) (solid

power spectra of botk, and s, are now given by line), gnq a surrogatsx(t)_ (dc_Jtted ling. (b) Coherence function of
the original AR data(solid ling), and the surrogate daf@otted
Fes(f)=Fgo (F)=a?(f)+[1—a(f)]> 9) line). 256 frequency bins were used.
X7X Y3y

The filters can easily be adjusted by simply dividing theSchreiber and SchmitzL5] can be applied here as well, al-
transfer functionthe filter in the frequency domaiby the  though no investigation has been done yet to determine the
square root of Eq(9). By using different realizations of criteria for convergence. For the purposes of this paper, we
Gaussian white noise for each surrogate pair, we can geneﬁiha” limit our discussion to cases where the distributions of
ate a population of surrogate pagsands,, that each have the data are approximately Gaussian.
the same power spectra and coherence function as the origi-
nal datax andy. IV. CANONICAL EXAMPLES
The distribution of the surrogate time series will be
Gaussian, with zero mean and a variance which depends on To demonstrate that the algorithm described here actually
the normalization properties of the discrete Fourier transfornfioes preserve the power spectra and coherence function of
method used. If the distributions of the original time seriesthe input time series, we test it on a simple linear stochastic
are also Gaussian, then rescaling the distributions of the suprocess. Consider the following autoregres<iR) process
rogates to that of the original data is trivially simple:
vp=—0., »+0.20,, 3= 0., 4+¢&,, (1)
g
St =5,(1) — +(x(1), _ S _
Os, where &, is Gaussian white noise with zero mean and unit
variance. The coefficients for this process are chosen arbi-
ay trarily, so as to produce a power spectrum that has a broad,
Sy(t)=sy(1) oo +y(), (10 dgjstinctive peak, as can be seen in Figp)1We also generate
% two time series of statistically independent Gaussian white
noise,u,(t) andu,(t), with zero mean and unit variance. We

whereo, andog indicate the standard deviation xft) and : .
X then generate two time series of coherent data as follows:

sy(t), respectively. Likewise foy(t) ands(t). The time
seriesS,(t) andS(t) are the final, rescaled surrogates. If the _
distribution of the original data is not Gaussian, then the x(O)=v(t)+uy(t),

rescaling becomes more complicated. The iteration scheme (12
for multivariate phase randomized surrogates presented by y(t)=v(t)+vy(t).
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We generatex(t) andy(t) with 65536 points each. We 10° (a)
also generate surrogates using the CDF method described in 160
Sec. lll. In Fig. 1a), the power spectra of both the time 2
seriesx(t) and its surrogat&,(t) are shown. Note that both S 10’
x(t) andy(t) have the same power spectra by construction. % 16°
In Fig. 1(b), the coherence function is shown for both the -
original data and the surrogate data. We can see from these 2 1077
figures that both the power spectra and coherence function of £ 10°4
the original data have been preserved. 160

To demonstrate this surrogate technique in an actual phase

synchronization test, we present two coupled Lorenz oscilla- | T T T .
tors[26-28: 0 50 100 150 200 250

Frequency Bin

X127 10(Y1,2X12) + €(Xp,1~ X109 + V2D £ A1), 107 (p)
‘ é 0.8
V1,27 28Xy = Y127 X12Z1 2 (13 8
2
2y 5= = 3215T X12Y12, §
[]
[
wheree is the coupling strength. Dynamical noise was added 5
with an intensity ofD =0.1, where¢, , are statistically inde- ©
pendent white noise with zero mean and unit variance. We ,
have chosen a coupling strengthesf 3.0. The other param- 0.0 . . . . .
eters were chosen to produce chaotic behavior. Equéti@n 0 50 100 180 200 250
was numerically integrated with a time step of 0.01, for a Frequency Bin

total of 524288 time steps. To calculate the instantaneous
phases of the Lorenz systems we introduce two new varil—in
ables[10,21]:

FIG. 2. (a) Power spectra of the original time serigg(t) (solid
e), and a surrogatSAl(t) (dotted ling. Note that a log scale is
used due to the strongly peaked spedtioa.Coherence function of
the original Lorenz datésolid ling), and the surrogate datdotted

A At)= \/levz(t)+y21,2(t), (14)  line). 256 frequency bins were used.
and then calculate the phasés j(t) and the phase differ-
ence ¢,(t) — ¢,(t) using the analytic signal approach ap- Xi(f)=a(f)U(f)+[1-a(f)]V(f),
plied to A; (t) [7]. The same time series &, At) were
used to calculate the power spectra and coherence function. Xo(f)=[1—a(f)JU(f)+a(f)V(), (15)

Figure 2 shows the power spectrum and coherence function

for this data, as well as for a surrogate pair. We see that, ONGRhere X,(f) and X,(f) are the Fourier transforms of the
again, the surrogate data preserves the power spectra and gl?perposed oscillatord, (t) and A,(t), respectively. The
coherence function of the original data. function «(f) was calculated from the coherence function
‘The synchronization index was calculated for both thegstimated from the coupled Lorenz oscillators, using By
original data and 19 realizations of the surrogate processihe synchronization index was then calculated for the super-
The distribution of instantaneous phase difference for thg,osed data, as well as for 19 surrogate pairs. The distribution
Lorenz data is sh(_)wn in Fig(&. The distribution of instan-  of jnstantaneous phase difference for both the superposed
taneous phase difference for one of the surrogate pairs iSprenz data and one of the surrogate pairs is shown in Fig. 4.
shown in Fig. 8b). For the original data we get,=0.583, In this case, we see that the superposition of Lorenz os-
which exceeds the maximum for all of the surrogates ofgjjators actually gives a synchronization index slightly lower
YSnac 0-470. Since Gaussian statistics cannot be assumeghan that of the surrogates, indicating that the high degree of
we apply a nonparametric rank-order statigtié]. If we  synchronization found in the coupled data is due only to the
haveN surrogates, then the probability of a false rejection ofnonlinear correlations between the two oscillators, and not to
the null hypothesis is 1§+ 1). We can, therefore, reject the the nonlinear behavior of the individual oscillators.
null hypothesis at the 95% confidence level. Similar results were also obtained using a pair of noisy
As a control test, we have generated data from two uneoupled Rasler oscillatord 29] with the parameter values
coupled Lorenz oscillatorseE0). Linear superpositions of described in Ref.[30]. However, an extremely high-
these time series were then made using the coherence funftequency resolution is required to generate proper surro-
tion estimated from the coupled Lorenz systems. This wagates for this system because of the very sharp peak obtained
done by summing the Fourier transforms of the uncoupledor the power spectrum. Recall that the sample size used for
oscillatorsU(f ) andV(f) as follows: the calculation of the power spectrum and coherence func-
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FIG. 3. Distribution of instantaneous phase difference for the FIG. 4. Distribution of instantaneous phase difference for the
coupled Lorenz datéa), and for the surrogate pair giving the maxi- linear superposition of uncoupled Lorenz oscillat@s and for the
mal value of the synchronization indék). In both cases the syn- surrogate pair giving the most typical value of the synchronization
chronization index is shown in the inset. index (b). In both cases the synchronization index is shown in the

inset.

tion must be small enough to allow for sufficient averaging

in Eq. (2), but large enough to accurately resolve any spectrgbresent. The purpose of this technique is not to prove that
peaks. Thus this method may not be suitable for data whictsuch coupling is present, but rather to demonstrate that a
like the Rassler system, has a very sharp spectral peak, ummodel of a linear superposition of independent oscillators is

less very long data sets are available. not sufficient to describe the data. Furthermore, this tech-
nique provides a method for establishing what value of the
V. DISCUSSION synchronization index is expected for a given degree of co-

. ) herence. This is very important in the analysis of spatiotem-

The surrogate analysis method described here tests th@yral data where both the coherence and synchronization in-
null hypothesis that the two time series being analyzed argex vary as a function of position. By “normalizing” the

superpositions of linear stochastic processes. We have showjnchronization index to the expectation value estimated by

that the synchronization index gives significantly differentthe coherence function, the ability to identify regions of high
results for actual phase synchronized, coupled Lorenz oscikynchronization can be much improved.

lators than for linear stochastic data with the same coherence
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