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Surrogate analysis of coherent multichannel data
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We present a method for generating surrogate data for multichannel time series. By preserving both the
power spectra and the cross spectrum of the original data, we can determine if a given statistical test~such as
the synchronization index! is being biased by the presence of coherence due to linear superposition of the
separate measurements. Current methods based on phase randomization techniques are unsuitable for this
particular task. This method is demonstrated on various canonical systems and numerical models. We will
show that this algorithm is capable of properly preserving the power spectra and coherence function of the
original data, and furthermore, that with the help of surrogate analysis the synchronization index measure is
capable of distinguishing between coupled nonlinear oscillators and coherent superpositions of independent
chaotic oscillators.
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I. INTRODUCTION

Recent advances in experimental multichannel record
techniques in medicine and neuroscience have stimul
growing interest in synchronization@1–4#. Recent studies in
the visual system of cats@1#, and the olfactory system o
locusts@5,6#, have revealed the impact of synchronization
operational performance of sensory systems. Moreover,
application of synchronization ideas to magnetoencepha
raphy~MEG! of Parkinsonian patients has shown the adv
tage of the synchronization approach in comparison with
traditional cross-correlation~coherence! analysis @7,8#. In
particular, it was shown that synchronization measures ba
on statistical properties of instantaneous phase differen
between two channels, allow a more precise localization
the tremor related brain activity@7#.

Synchronization is fundamentally a nonlinear effect and
manifested as the adjustment of frequencies or phase
weakly interacting oscillatory nonlinear elements. When t
oscillators are synchronized it is expected that they will
hibit a high degree of coherence. On the other hand, co
ence of two signals can simply be due to linear superp
tion, and it must be established that the synchroniza
measure is not being biased.

An example of this problem can be seen in the synch
nization tomography technique developed by Tasset al.
@7,8#. Current source densities in the human brain are ca
lated from MEG signals, using a technique known as m
netic field tomography~MFT! @9#. Synchronization analysis
can then be applied to pairs of source locations in the br
The nature of the way the MEG readings are recorded g
antees that each signal has a certain amount of cross
tamination from other locations@7#. Methods for distinguish-
ing between synchronization and simple linear coherence
therefore of great importance and practical relevance@10#.

The straightforward experimental manipulations whi
modify system parameters are, in principle, the best way
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distinguish between synchronization and linear coheren
For example, application of pharmacological agents c
modify coupling strength between neurons, showing chan
in dynamics@5,6#. In other cases, changing the natural fr
quencies of interacting subsystems may reveal the existe
of coupling and synchronization@11,12#. Unfortunately, in
many cases such experimental procedures are either very
ficult to do, or completely impossible as in the case w
MEG. Therefore, the statistical methods for generating s
rogates and rejecting a null hypothesis must be applied.

The crucial question that arises is: ‘‘What effect does
coherence between two signals have on the synchroniza
measures?’’ In order to establish whether a given synchr
zation measure calculation indicates a real dynamical c
pling between the signals, or is simply due to linear sup
position, statistical significance testing must be done@13#.

Surrogate analysis is often used to empirically estim
the distribution of statistical measures. For the purposes
quired here, the surrogate data should preserve both
power spectra of the two time series being analyzed, as
as the coherence function. Methods for generating surrog
with these properties have been developed@14,15#, based on
the well-known phase randomized surrogate techniq
@16,17#. These methods work by adding random numb
~from 0 to 2p! to the phase of each frequency component
the Fourier transform of the data. The same set of rand
phases is added to each time series, thereby preserving
phase differences, and thus the coherence function of
original data. This technique is not appropriate for the ana
sis proposed here, although the reason is somewhat sub

The phase differences that would be expected if lin
superposition were the source of the coherence will hav
specific distribution. Of course, if the phase differences
the original data clearly do not match the expected distri
tion, we can reject the null hypothesis immediately. But
many cases the distribution of phase differences may no
immediately distinguishable from the expected distributio
Nevertheless, any anomalies that may exist will be exa
preserved by the surrogates described above, which ca
sult in a significant bias. Put simply, the coherence funct
©2002 The American Physical Society08-1
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is an averaged quantity that depends on the phase d
ences. By preserving the exact phase differences from
original data, we preserve not just the coherence funct
but also any other correlations that may be encoded by
phase differences. These other correlations could effect
synchronization measures in any number of unpredicta
ways.

In this paper we propose a method of surrogate anal
for multichannel data sets that is based on the digitally
tered shuffled~DFS! surrogate technique recently describ
in Ref. @18#. This method was developed to address a pr
lem with spectral variability in the phase randomized sur
gate techniques@15,19#. This paper is organized as follow
In Sec. II we describe the synchronization index and
coherence function. We present the algorithm for genera
the coherent digitally filtered~CDF! surrogates in Sec. III. In
Sec. IV we demonstrate the technique on some canon
examples.

II. SYNCHRONIZATION INDEX
AND COHERENCE FUNCTION

The coherence function measures linear correlations
tween two stochastic processesx(t) and y(t) in the fre-
quency domain@20#, and is calculated as

C~ f !5
uFxy~ f !u

AFxx~ f !Fyy~ f !
, ~1!

where the power spectra and cross spectrum are given

Fxx~ f !5^X~ f !X* ~ f !&,

Fyy~ f !5^Y~ f !Y* ~ f !&, ~2!

Fxy~ f !5^Y~ f !X* ~ f !&,

and X( f ) and Y( f ) are the Fourier transforms ofx(t) and
y(t), respectively. The indicated averaging^•& is understood
to be an ensemble average over many realizations of
processes. Of course, in practice these averages must b
timated from the single pair of measured time series. T
coherence function ranges from 0~no cross correlation! to 1
~full coherence!.

Phase synchronization between two processesx(t) and
y(t) is estimated through the calculation of the differenc
cxu(t) between their instantaneous phasesfx(t) andfy(t).
See Refs.@10,21# for different approaches to the calculatio
of the instantaneous phase:

cxy~ t !5mfx~ t !2nfy~ t !, ~3!

wheremandn are integer numbers. In this paper we consid
the simplest case of 1:1 synchronization whenm5n51. Due
to noise in the system, the phase difference diffuses ov
periodic potentialU(cxy)5U(cxy12p) @22#. The Brown-
ian motion of the phase difference of stochastically synch
nized systems contains the phase-locked epochs when
phase difference stays in a potential well ofU(cxy), and
phase slips when the phase difference rapidly jumps fr
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one potential well to another. Several measures have b
proposed to characterize such stochastic dynamics@10,23#.
In the case of the 1:1 synchronization considered here, th
measures can be derived from the probability density of
phase differenceP(c). The uniform distribution correspond
to the absence of synchronization, while a well expres
peak inP(c) indicates synchronization. The synchronizati
index can thus be derived as the first Fourier harmonic
P(c) @10#:

g25^cosc&21^sinc&2. ~4!

The synchronization index changes from 0~uniform distri-
bution of the phase difference, no synchronization! to 1 ~d
distribution, strongest synchronization!.

III. COHERENT DIGITALLY FILTERED SURROGATES

In Ref. @18# a technique was presented for generating s
rogate data that preserves the power spectrum of the orig
data, but which is consistent with the null hypothesis o
linear stochastic process. This method is based on the b
principles of linear signal processing and can be adapted
the problem at hand.

The first part of the analysis consists of extracting t
needed information from the original data. The power sp
tra Fxx and Fyy , as well as the cross spectrumFxy , are
calculated. This is done by demeaning the data, and t
using 50% overlapping samples of lengthN, whereN/211
is the desired frequency resolution. Fourier transforms
these samples are made using a windowing function, suc
the Welch window@24#. The averaging called for in Eq.~2!
is then made over these samples. A detailed descriptio
this process can be found in Ref.@25#.

The sample sizeN should be chosen small enough to pr
vide effective averaging, but large enough to resolve a
significant structure. Linear filters can be made from t
power-spectra estimates ofx(t) andy(t) as described in Ref
@18#. That is, by taking the square root of the power estima
and then using linear interpolation to increase the freque
resolution fromN/211 back toL/211, whereL is the file
length. This produces a transfer function that, when mu
plied by the Fourier transform of a lengthL sequence of
Gaussian distributed,d-correlated numbers~white noise!,
will result in a time series with the appropriate power spe
trum.

To reproduce the appropriate coherence function for
surrogates, we look at a simple model for linear superpo
tion. Consider two statistically independent linear stocha
processesu(t) and v(t). We can then make two coheren
time series as follows:

sx~ t !5au~ t !1~12a!v~ t !,
~5!

sy~ t !5~12a!u~ t !1av~ t !,

where a is a constant from 0~no coherence! to 0.5 ~full
coherence!. The coherence can easily be calculated for
time seriessx(t) andsy(t):
8-2
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C5
2a~12a!

a21~12a!2 . ~6!

Note that when we write it this way, we see thata can be
an arbitrary function of frequencyf. By doing the sum in Eq.
~5! in the frequency domain, we can achieve any cohere
function C( f ) we want:

C~ f !5
2a~ f !@12a~ f !#

a2~ f !1@12a~ f !#2 . ~7!

One very convenient aspect of the coherence functio
that if one~or both! of the time series are passed through
linear filter, the coherence function is not altered. This me
that we can generate surrogates of our original time se
x(t) and y(t) by makingu(t) and v(t) independent white
noise, and then use an appropriate functiona( f ) to get sx
and sy , which can then be filtered to get the appropria
power spectra.

To select the proper values ofa ~as a function of fre-
quency!, we simply invert Eq.~7!,

a~ f !5
1

2
2A1

4
2

C~ f !

2@11C~ f !#
. ~8!

It should be noted that the power spectra ofsx andsy will
no longer be white, due to the summing above. The filt
must therefore be altered to compensate for this effect.
power spectra of bothsx andsy are now given by

Fsxsx
~ f !5Fsysy

~ f !5a2~ f !1@12a~ f !#2. ~9!

The filters can easily be adjusted by simply dividing t
transfer function~the filter in the frequency domain! by the
square root of Eq.~9!. By using different realizations o
Gaussian white noise for each surrogate pair, we can ge
ate a population of surrogate pairssx andsy , that each have
the same power spectra and coherence function as the o
nal datax andy.

The distribution of the surrogate time series will b
Gaussian, with zero mean and a variance which depend
the normalization properties of the discrete Fourier transfo
method used. If the distributions of the original time ser
are also Gaussian, then rescaling the distributions of the
rogates to that of the original data is trivially simple:

Sx~ t !5sx~ t !
sx

ssx

1^x~ t !&,

Sy~ t !5sy~ t !
sy

ssy

1^y~ t !&, ~10!

wheresx andssx
indicate the standard deviation ofx(t) and

sx(t), respectively. Likewise fory(t) and sy(t). The time
seriesSx(t) andSy(t) are the final, rescaled surrogates. If t
distribution of the original data is not Gaussian, then
rescaling becomes more complicated. The iteration sch
for multivariate phase randomized surrogates presented
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Schreiber and Schmitz@15# can be applied here as well, a
though no investigation has been done yet to determine
criteria for convergence. For the purposes of this paper,
shall limit our discussion to cases where the distributions
the data are approximately Gaussian.

IV. CANONICAL EXAMPLES

To demonstrate that the algorithm described here actu
does preserve the power spectra and coherence functio
the input time series, we test it on a simple linear stocha
process. Consider the following autoregression~AR! process

vn520.1vn2210.2vn2320.1vn241jn , ~11!

wherejn is Gaussian white noise with zero mean and u
variance. The coefficients for this process are chosen a
trarily, so as to produce a power spectrum that has a br
distinctive peak, as can be seen in Fig. 1~a!. We also generate
two time series of statistically independent Gaussian wh
noise,u1(t) andu2(t), with zero mean and unit variance. W
then generate two time series of coherent data as follow

x~ t !5v~ t !1u1~ t !,
~12!

y~ t !5v~ t !1v2~ t !.

FIG. 1. ~a! Power spectra of the original time seriesx(t) ~solid
line!, and a surrogateSx(t) ~dotted line!. ~b! Coherence function of
the original AR data~solid line!, and the surrogate data~dotted
line!. 256 frequency bins were used.
8-3
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We generatex(t) and y(t) with 65 536 points each. We
also generate surrogates using the CDF method describ
Sec. III. In Fig. 1~a!, the power spectra of both the tim
seriesx(t) and its surrogateSx(t) are shown. Note that both
x(t) andy(t) have the same power spectra by constructi
In Fig. 1~b!, the coherence function is shown for both t
original data and the surrogate data. We can see from t
figures that both the power spectra and coherence functio
the original data have been preserved.

To demonstrate this surrogate technique in an actual p
synchronization test, we present two coupled Lorenz osc
tors @26–28#:

ẋ1,2510~y1,22x1,2!1e~x2,12x1,2!1A2Dj1,2~ t !,

ẏ1,2528x1,22y1,22x1,2z1,2 ~13!

ż1,252 8
3 z1,21x1,2y1,2,

wheree is the coupling strength. Dynamical noise was add
with an intensity ofD50.1, wherej1,2 are statistically inde-
pendent white noise with zero mean and unit variance.
have chosen a coupling strength ofe53.0. The other param
eters were chosen to produce chaotic behavior. Equation~13!
was numerically integrated with a time step of 0.01, for
total of 524 288 time steps. To calculate the instantane
phases of the Lorenz systems we introduce two new v
ables@10,21#:

A1,2~ t !5Ax1,2
2 ~ t !1y1,2

2 ~ t !, ~14!

and then calculate the phasesf1,2(t) and the phase differ
encef1(t)2f2(t) using the analytic signal approach a
plied to A1,2(t) @7#. The same time series ofA1,2(t) were
used to calculate the power spectra and coherence func
Figure 2 shows the power spectrum and coherence func
for this data, as well as for a surrogate pair. We see that, o
again, the surrogate data preserves the power spectra an
coherence function of the original data.

The synchronization index was calculated for both
original data and 19 realizations of the surrogate proc
The distribution of instantaneous phase difference for
Lorenz data is shown in Fig. 3~a!. The distribution of instan-
taneous phase difference for one of the surrogate pair
shown in Fig. 3~b!. For the original data we getgA50.583,
which exceeds the maximum for all of the surrogates
gSmax

50.470. Since Gaussian statistics cannot be assum
we apply a nonparametric rank-order statistic@16#. If we
haveN surrogates, then the probability of a false rejection
the null hypothesis is 1/(N11). We can, therefore, reject th
null hypothesis at the 95% confidence level.

As a control test, we have generated data from two
coupled Lorenz oscillators (e50). Linear superpositions o
these time series were then made using the coherence
tion estimated from the coupled Lorenz systems. This w
done by summing the Fourier transforms of the uncoup
oscillatorsU( f ) andV( f ) as follows:
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X1~ f !5a~ f !U~ f !1@12a~ f !#V~ f !,

X2~ f !5@12a~ f !#U~ f !1a~ f !V~ f !, ~15!

where X1( f ) and X2( f ) are the Fourier transforms of th
superposed oscillatorsA1(t) and A2(t), respectively. The
function a( f ) was calculated from the coherence functi
estimated from the coupled Lorenz oscillators, using Eq.~8!.
The synchronization index was then calculated for the sup
posed data, as well as for 19 surrogate pairs. The distribu
of instantaneous phase difference for both the superpo
Lorenz data and one of the surrogate pairs is shown in Fig

In this case, we see that the superposition of Lorenz
cillators actually gives a synchronization index slightly low
than that of the surrogates, indicating that the high degre
synchronization found in the coupled data is due only to
nonlinear correlations between the two oscillators, and no
the nonlinear behavior of the individual oscillators.

Similar results were also obtained using a pair of no
coupled Ro¨ssler oscillators@29# with the parameter value
described in Ref. @30#. However, an extremely high
frequency resolution is required to generate proper su
gates for this system because of the very sharp peak obta
for the power spectrum. Recall that the sample size used
the calculation of the power spectrum and coherence fu

FIG. 2. ~a! Power spectra of the original time seriesA1(t) ~solid
line!, and a surrogateSA1

(t) ~dotted line!. Note that a log scale is
used due to the strongly peaked spectra.~b! Coherence function of
the original Lorenz data~solid line!, and the surrogate data~dotted
line!. 256 frequency bins were used.
8-4
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SURROGATE ANALYSIS OF COHERENT MULTICHANNEL DATA PHYSICAL REVIEW E65 026108
tion must be small enough to allow for sufficient averagi
in Eq. ~2!, but large enough to accurately resolve any spec
peaks. Thus this method may not be suitable for data wh
like the Rössler system, has a very sharp spectral peak,
less very long data sets are available.

V. DISCUSSION

The surrogate analysis method described here tests
null hypothesis that the two time series being analyzed
superpositions of linear stochastic processes. We have sh
that the synchronization index gives significantly differe
results for actual phase synchronized, coupled Lorenz o
lators than for linear stochastic data with the same cohere
function and power spectra. Furthermore, by showing t
the synchronization index gives similar results for linear
perpositions of independent Lorenz oscillators and linear
perpositions of linear stochastic data, we have demonstr
that the nonlinear statistical properties of the individual tim
series are not responsible for the results.

In general, a rejection of the null hypothesis does
conclusively prove that nonlinear dynamical coupling

FIG. 3. Distribution of instantaneous phase difference for
coupled Lorenz data~a!, and for the surrogate pair giving the max
mal value of the synchronization index~b!. In both cases the syn
chronization index is shown in the inset.
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present. The purpose of this technique is not to prove
such coupling is present, but rather to demonstrate th
model of a linear superposition of independent oscillators
not sufficient to describe the data. Furthermore, this te
nique provides a method for establishing what value of
synchronization index is expected for a given degree of
herence. This is very important in the analysis of spatiote
poral data where both the coherence and synchronization
dex vary as a function of position. By ‘‘normalizing’’ the
synchronization index to the expectation value estimated
the coherence function, the ability to identify regions of hi
synchronization can be much improved.
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